Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648261

RESUMO

Different cellulose nanocrystal (CNC) forms (dried vs never-dried) can lead to different degrees of CNC reassembly, the formation of nanofibril-like structures, in nanocomposite latex-based pressure-sensitive adhesive (PSA) formulations. CNC reassembly is also affected by CNC sonication and loading as well as the protocol used for CNC addition to the polymerization. In this study, carboxylated CNCs (cCNCs) were incorporated into a seeded, semibatch, 2-ethylhexyl acrylate/methyl methacrylate/styrene emulsion polymerization and cast as pressure-sensitive adhesive (PSA) films. The addition of CNCs led to a simultaneous increase in tack strength, peel strength, and shear adhesion, avoiding the typical trade-off between the adhesive and cohesive strength. Increased CNC reassembly resulted from the use of dried, redispersed, and sonicated cCNCs, along with increased cCNC loading and addition of the cCNCs at the seed stage of the polymerization. The increased degree of CNC reassembly was shown to significantly increase the shear adhesion by enhancing the elastic modulus of the PSA films.

2.
Langmuir ; 39(30): 10321-10334, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459396

RESUMO

The scale of production of cellulose nanocrystals (CNCs) has increased dramatically to meet the growing demand for sustainably sourced materials. This work defines the colloidal stability window for commercially produced carboxylated CNCs (DextraCel) compared to the more traditional sulfated CNCs. Phase diagrams showing the stable, reversibly agglomerated, irreversibly aggregated/sedimented, and colloidal glass "zones" as a function of suspension pH, ionic strength, CNC surface charge content, counterion, and concentration are presented. The pKa of carboxylated CNCs was measured to be 5.1, and suspensions of carboxylated CNCs (0.5-1.5 wt %) were visually stable from pH 3 to 11 (without salt). Carboxylated CNCs were highly sensitive to ionic strength, demonstrating some agglomeration with as little as 5 mM NaCl, supporting that weak acid surface groups and lower charge contents make CNCs more sensitive to solution conditions. Surface charge content had the greatest influence on colloidal stability followed by the counterion; carboxylated CNCs were more stable in the "as-received" sodium form, whereas sulfated CNCs had improved stability in acid form after ion exchange. The stability of carboxylated CNCs with industrially relevant additives (ionic and nonionic surfactants and initiators) was also investigated. Less concentrated suspensions were more colloidally stable, emphasizing that characterization and processing of CNCs favor dilute conditions. If carboxylated CNCs are subjected to conditions outside of their colloidal stability window, simple dilution or pH adjustment does not return them to colloidally stable discrete nanoparticles; however, ultrasonication can redisperse agglomerates. This study offers guidelines for handling carboxylated CNCs to broaden the range of products that can be improved by their incorporation.

3.
Nanotechnology ; 34(20)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36787629

RESUMO

Blended films comprising poly(butyl acrylate) (PBA)-grafted cellulose nanocrystals (CNCs) and poly(3-hexylthiophene) (P3HT), exhibited more intense photoluminescence (PL) and longer PL emission lifetimes compared to pristine P3HT films. Optical absorption and photoluminescence spectra indicated reduced torsional disorder i.e. enhanced backbone planarity in the P3HT@CNC blended composites compared to the bare P3HT. Such molecule-level geometrical modification resulted in both smaller interchain and higher intrachain exciton bandwidth in the blended composites compared to the bare P3HT, because of reduced interchain interactions and enhanced intrachain order. These results indicate a potential switch of the aggregation behavior from dominant H-aggregates to J-aggregates, supported by Raman spectroscopy. The reorganization of micromolecular structure and concomitant macroscopic aggregation of the conjugated polymer chains resulted in a longer conjugation length for the P3HT@CNC blended composites compared to the bare P3HT. Additionally, this nanoscale morphological change produced a reduction in the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of the blends, evidenced from optical absorption spectra. Classical molecular dynamics simulation studies predicted the probability of enhanced planarity in the polymer backbone following interactions with CNC surfaces. Theoretical results from density functional theory calculations corroborate the experimentally observed reduction of optical bandgap in the blends compared to bare P3HT. The blended composite outperformed the bare P3HT in nitro-group PL sensing tests with a pronounced difference in the reaction kinetics. While the PL quenching dynamics for bare P3HT followed Stern-Volmer kinetics, the P3HT@CNC blended composite exhibited a drastic deviation from the same. This work shows the potential of a functionalized rod-like biopolymer in tuning the optoelectronic properties of a technologically important polymeric organic semiconductor through control of the nanoscale morphology.

4.
ACS Mater Au ; 2(2): 176-189, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855757

RESUMO

While the improvement of water-based adhesives with renewable additives is important as industry shifts toward more sustainable practices, a complete understanding of how the compatibility between additives and polymers affects adhesive performance is currently lacking. To elucidate these links, cellulose nanocrystals (CNCs) were first functionalized via surface-initiated atom-transfer radical polymerization with the hydrophobic polymers poly(butyl acrylate) (PBA) and poly(methyl methacrylate) (PMMA) to facilitate their incorporation into latex-based pressure-sensitive adhesives (PSAs). Next, PBA latexes were synthesized using seeded semibatch emulsion polymerization with unmodified or polymer-grafted CNCs added in situ at a loading of 0.5 or 1 phm (parts per hundred parts of monomer). Viscosity and electron microscopy suggested that the polymer-grafted CNCs were incorporated inside or on the latex particles. PSAs containing any CNC type had one or more improved properties (compared to the no-CNC "base case"); CNCs with a low degree of polymerization (DP) grafts exhibited improved tack (up to 2.5-fold higher) and peel strength (up to 6-fold higher) relative to PSAs with unmodified CNCs. The best performing PSA contained the low DP PMMA-grafted CNCs, which is attributed to the higher glass transition temperature and the higher wettability of the PMMA grafts compared to PBA, and the more uniform dispersion of polymer-grafted CNCs throughout the PSA film. In contrast, PSAs containing CNCs with high DP grafts resulted in reduced tack and peel strength (compared to low DP grafts) due to enhanced CNC aggregation. Unfortunately, all PSAs containing polymer-grafted CNCs exhibited inferior shear strength relative to PSAs with unmodified CNCs (and comparable shear strength to the no-CNC "base case"). Collectively, these results provide guidelines for future optimization of more sustainable latex-based PSAs.

5.
Biomacromolecules ; 22(8): 3601-3612, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252279

RESUMO

Hydrophobic polymer-grafted cellulose nanocrystals (CNCs) were produced via surface-initiated atom-transfer radical polymerization (SI-ATRP) in two different solvents to examine the role of reaction media on the extent of surface modification. Poly(butyl acrylate)-grafted CNCs were synthesized in either dimethylformamide (DMF) (D-PBA-g-CNCs) or toluene (T-PBA-g-CNCs) alongside a free polymer from a sacrificial initiator. The colloidal stability of unmodified CNCs, initiator-modified CNCs, and PBA-g-CNCs in water, DMF, and toluene was evaluated by optical transmittance. The enhanced colloidal stability of initiator-modified CNCs in DMF led to improved accessibility to initiator groups during polymer grafting; D-PBA-g-CNCs had 30 times more grafted chains than T-PBA-g-CNCs, determined by thermogravimetric and elemental analysis. D-PBA-g-CNCs dispersed well in toluene and were hydrophobic with a water contact angle of 124° (for polymer grafts > 13 kDa) compared to 25° for T-PBA-g-CNCs. The cellulose crystal structure was preserved, and individual nanoparticles were retained when grafting was carried out in either solvent. This work highlights that optimizing CNC colloidal stability prior to grafting is more crucial than solvent-polymer compatibility to obtain high graft densities and highly hydrophobic CNCs via SI-ATRP.


Assuntos
Celulose , Nanopartículas , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...